Variedad estable sobre conjuntos hiperbólicos

Joel Mendoza*

Departamento de Ciencias, Sección de matemáticas Pontificia Universidad Católica del Perú Perú

10 de enero de 2018

Resumen

En este artículo, se demuestra que el conjunto estable e inestable asociado a un conjunto hiperbólico posee estructura de variedad diferenciable. Para esto se reduce el problema a encontrar la variedad estable de un punto hiperbólico en un espacio de Banach adecuaco.

Palabras clave: variedad estable, punto hiperbólico, conjunto hiperbólico

Abstract

In this article, it is demonstrated that the stable and unstable set associated with a hyperbolic set has structure of differentiable manifold. For this the problem to find the stable manifold of a hyperbolic point in a suitable Banach space is reduced.

Keywords: stable manifold, hyperbolic point, hyperbolic set

1. Introducción

El presente trabajo comunica la demostración del teorema de variedad estable para un conjunto hiperbólico. Para la construcción de estos conjunto puede consultar [3], [2], [6]. Seguiremos el camino dado en [6].

La idea de la prueba será reducir el problema de encontrar la variedad estable para un conjunto hiperbólico a encontrar la variedad estable para un punto hiperbólico en un espacio de Banach adecuado.

El propósito principal es la prueba del siguiente teorema

Teorema 1.1. Sean f un difeomorfismo de M, $y \land un$ conjunto hiperbólico cerrado para f el cual está con la métrica adaptada. Entonces existe $\epsilon > 0$ tal que para cada $x \in W^s_{\epsilon}(x, f)$ es un disco incrustado de dimensión igual a la dimensión de E^s_x ; más aún, $T_xW^s_{\epsilon}(x) = E^s_x$; y similarmente para el caso inestable.

Los discos estable e inestable también satisface lo siguiente :

^{*}Magister en matemáticas por la Pontificia Universidad Católica del Perú

1.
$$d(f^n(x), f^n(y)) \leq \lambda^n d(x, y), \ \forall y \in W^s_{\epsilon}(x), \ \forall n \geq 0,$$

$$d(f^{-n}(x), f^{-n}(y)) \leq \lambda^n d(x, y), \ \forall y \in W^u_{\epsilon}(x), \ \forall n \geq 0,$$

$$donde \ \lambda < 1 \ es \ tal \ que \ \|Df|_{E^s}\| < \lambda \ y \ \|(Df|_{E^u})^{-1}\| < \lambda.$$

2. La incrustación de $W_{\epsilon}^{u(resp.s)}(x,f)$ varía continuamente con x. Más precisamente, si f es C^r y $n=dim E^s$, entonces existe una vecindad U de x y una aplicación continua

$$\Theta: U \to Emb^r(D^n, M)$$

tal que
$$\Theta(y)(0) = y$$
, $\Theta(y)(D^n) = W^s_{\epsilon}(y, f)$, $\forall y \in U$.

3.
$$W^s_{\epsilon}(x,f) = \{y: d(f^n(x), f^n(y)) \le \epsilon; \ \forall n \ge 0\},$$

$$W^u_{\epsilon}(x,f) = \{y: d(f^n(x), f^n(y)) \le \epsilon; \ \forall n \le 0\}.$$

4. La variedad $W_{\epsilon}^{u(resp.s)}(x, f)$ es tan suave como f.

2. Materiales y métodos

2.1. Preliminares

En esta sección se introduce el alfabeto adecuado para desarrollar el presente tema.

Definición 2.1. Un conjunto invariante tiene estructura hiperbólica para un difeomorfismo f en M si:

- (i) En cada punto $p \in \Lambda$, se cumple $T_p M = \mathbb{E}_p^u \oplus \mathbb{E}_p^s$, el espacio tangente a M se descompone como la suma de $\mathbb{E}_p^u y \mathbb{E}_p^s$.
- (ii) Esta descomposición es invariante mediante la aplicación derivada en el sentido que $Df_p(\mathbb{E}_p^u) = E_{f(p)}^u$ y $Df_p(\mathbb{E}_p^s) = E_{f(p)}^s$.
- (iii) Existen $0 < \lambda < 1$ y $C \ge 1$ independientes de p tales que $\forall n \ge 0$,

$$\begin{array}{lcl} |Df_p^nv^s| & \leq & C\lambda^n|v^s|, & \forall v^s \in \mathbb{E}_p^s, & \mathbf{y} \\ |Df_p^{-n}v^u| & \leq & C\lambda^n|v^u|, & \forall v^u \in \mathbb{E}_p^u. \end{array}$$

Si el conjunto invariante Λ tiene estructura hiperbólica para f. También se dice que Λ es un **conjunto (invariante) hiperbólico**.

Además denotemos por Λ un conjunto cerrado en M, E = TM el fibrado tangente sobre Λ , se denota por $\Gamma^0(\Lambda, E)$ el espacio de secciones continuas de E y por $\Gamma^b(\Lambda, E)$ el espacio de secciones acotadas, estos dos espacios tienen estructura natural de fibrado vectorial. 1 . El espacio $\Gamma^0(\Lambda, E) \subset \Gamma^b(\Lambda, E)$ pues M y Λ son compactos. La norma del supremo en $\Gamma^b(\Lambda, E)$ es definida por $\|h\| = \sup_{x \in \Lambda} \|h(x)\|$. Esta norma hace de $\Gamma^0(\Lambda, E)$

un espacio de Banach. El conjunto $\Gamma^0(\Lambda, E)$ es cerrado en $\Gamma^b(\Lambda, E)$ pues el límite uniforme de funciones continuas es continua.

 $^{^{1}}$ ver [4]

Definición 2.2. Sea f un homeomorfismo de M y Λ un conjunto cerrado, f—invariante. Si f es de clase C^1 se define el automorfismo:

$$\begin{array}{ccc} f_{\#}: \Gamma^b(\Lambda, T_{\Lambda}M) & \to & \Gamma^b(\Lambda, T_{\Lambda}M) \\ h & \mapsto & Df \cdot h \cdot f^{-1} \end{array}$$

es decir, $(f_{\#}(h))(x) = Df_{f^{-1}(x)}(h(f^{-1}(x)))$

Lema 2.3. Sea $f_{\#}: h \mapsto Df \cdot h \cdot f^{-1}$, ver definición 2.2, entonces se verifica lo siguiente:

- a) Si f es C^1 , el automorfismo Df de TM es C^0 , entonces $f_\#$ envia $\Gamma^0(\Lambda, T_{\Lambda}M)$ en $\Gamma^0(\Lambda, T_{\Lambda}M)$.
- b) $f_{\#}$ es una función continua de $\Gamma^b(\Lambda, T_{\Lambda}M)$ en $\Gamma^b(\Lambda, T_{\Lambda}M)$ y además $||f_{\#}|| = ||Df||$.

Demostración. La prueba de (a) es solo aplicar la definición. Para la prueba de (b) se consideran h_1, h_2 en $\Gamma^b(\Lambda, T_{\Lambda}M)$ tal que $||h_1 - h_2|| \leq \frac{\epsilon}{\lambda}$ así se tiene

$$||f_{\#}h_{1} - f_{\#}h_{2}|| = ||(f_{\#}(h_{1}))(x) - (f_{\#}(h_{2}))(y)||$$

$$= ||Df_{f^{-1}(x)}(h_{1}(f^{-1}(x))) - Df_{f^{-1}(y)}(h_{2}(f^{-1}(y)))||$$

$$\leq ||Df_{z}|| ||h_{1}(f^{-1}(x)) - h_{2}(f^{-1}(y))||, z \in [f^{-1}(x), f^{-1}(y)]$$

$$\leq \lambda(\frac{\epsilon}{\lambda})$$

$$\leq \epsilon.$$

Con esto se ha probado que $f_\#$ es continua, además de la definición de $f_\#$ se tiene que $\|f_\#\| = \|Df\|$. Esto termina la demostración.

Proposición 2.4. Sean $f: M \to M$ un difeomorfismo C^1 , Λ un conjunto cerrado, invariante por f. Λ es un conjunto hiperbólico para f si g solo si f# es una aplicación lineal hiperbólica².

DEMOSTRACIÓN.

[⇒] Si Λ es hiperbólico para f, entonces el espacio vectorial $\Gamma^b(\Lambda, T_{\Lambda}M)$ admite una descomposición hiperbólica para $f_\#$

$$\Gamma^b(\Lambda, T_{\Lambda}M) = \Gamma^b(\Lambda, E^s) \oplus \Gamma^b(\Lambda, E^u),$$

es decir, $f_{\#}$ es una aplicación lineal hiperbólica.

 $[\Leftarrow]$ Como $f_{\#}$ es una aplicación lineal hiperbólica, entonces se tiene que

$$\Gamma^b(\Lambda, T_{\Lambda}M) = E^s \oplus E^u$$

es una descomposición hiperbólica para $f_{\#}$.

Se construye una descomposición hiperbólica para $T_{\Lambda}M$ como sigue

$$E_x^s = E^s(x) = \{g_s(x) : g_s \in E^s\} \subset T_{\Lambda}M,$$

 $E_x^u = E^u(x) = \{g_u(x) : g_u \in E^u\} \subset T_{\Lambda}M$

de donde se tiene que

$$T_xM = E_x^s \oplus E_x^u = \{g(x) : g \in \Gamma^b(\Lambda, T_\Lambda M)\}, \text{ para cada } x \in \Lambda.$$

Por lo tanto Λ es un conjunto hiperbólico para f.

 $^{^{2}}$ Ver [3, 5]

2.2. La aplicación exponencial

Se define el espacio

$$B(\Lambda, M) = \{h : \Lambda \to M; h \text{ es acotada } \},$$

este es una variedad diferenciable sobre el espacio de campos vectoriales acotados (secciones del fibrado tangente) $\Gamma^b(\Lambda, T_{\Lambda}M)$.

También se define la aplicación $\exp_x : T_x M \to M$ como sigue: Ver [4].

- a) $D(\exp_x)(0) = id$,
- b) Envía lineas en $T_x M$ que pasan por el origen en geodésicas en M que pasan por x,
- c) Envía bolas en T_xM cerca del origen en bolas en M cerca de x,
- d) $d(\exp_x x_i, x) = ||x_i||$ para x_i suficientemente pequeño en $T_x M$.

En (c)aún vale algo más esto sigue de (a) se tiene por el teorema de la aplicación inversa que para δ suficientemente pequeño es un difeomorfismo sobreyectivo de $B(0,\delta)$ en $B(x,\delta)$ y cuando M es compacto δ no depende de x. En este caso, la aplicación exponencial es un difeomorfismo de una vecindad de la sección cero del fibrado tangente sobre una vecindad de la diagonal en $M\times M$:

$$\exp: u \mapsto (m, \exp_m(u)), \quad u \in T_m(M).$$

2.2.1. Cartas sobre $B(\Lambda, M)$

Sean

$$\operatorname{inc}(\Lambda)$$
 la inclusión de Λ en $M(x \mapsto x)$,

 U_{δ} la vecindad de inc(Λ) en $B(\Lambda, M)$, es decir,

$$U_{\delta} = \{ g \in B(\Lambda, M) : d(g(x), x) \le \delta, \quad \forall x \in \Lambda \}.$$

La carta Φ está definida por:

$$\Phi: U_{\delta} \to \Gamma_{\delta}^{b}(\Lambda, TM) \subset \Gamma^{b}(\Lambda, TM)
h \mapsto \Phi(h) = \exp^{-1}(\operatorname{gráfico}(h)).$$

 $\Phi(h)$ es la sección dada por $\Phi(h)(x) = \exp_x^{-1}(h(x))$, esto es,

$$\Phi(h)(x) = \exp^{-1}(x, h(x)).$$

Además se nota que $\Phi(\operatorname{inc}(\Lambda)) = \exp_x^{-1}(x)$, es decir, $\Phi(\operatorname{inc}(\Lambda))$ es la sección cero, la cual es denotada por $\tilde{0}$.

2.2.2. Aplicación de la exponencial y la variedad estable local de $\tilde{0}$

Definición 2.5. Sea M una variedad Riemanniana y $f:M\to M$ un difeomorfismo.

a) Se define el automorfismo de $B(\Lambda, M)$ asociado a f, \hat{F} , como

$$\hat{F} = fhf^{-1}.$$

b) Con cartas exponencial, es suficiente estudiar \tilde{F} definida en una vecindad de la sección cero definida por

$$\tilde{F} = \Phi \hat{F} \Phi^{-1}.$$

Observaci'on~2.6.

- a) La inclusión $\operatorname{inc}(\Lambda)$ es un punto fijo para \hat{F} . (ver la acción de \hat{F} y \tilde{F} en la figura 1). Se probará que $\operatorname{inc}(\Lambda)$ es, en efecto, un punto fijo hiperbólico para \hat{F} .
- b) La imagen de la sección σ de $\Gamma^b_\eta(\Lambda,TM),$ para $\eta<\delta,$ es la sección

$$\tilde{F}(\sigma)(x) = \exp_x^{-1}(f(\exp_{f^{-1}(x)}(\sigma(f^{-1}(x))))),$$

ver figura 3.

Figura 1: Acción de \hat{F} y \tilde{F}

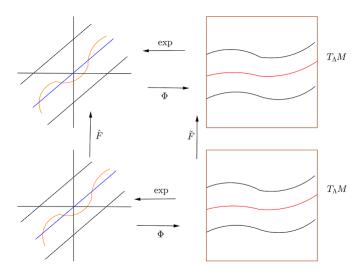
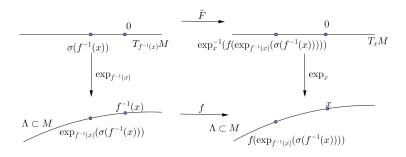


Figura 2: Forma local de \hat{F}

Figura 3: Acción de \tilde{F}



Lema 2.7. Sean M una variedad Riemanniana, $f: M \to M$ un difeomorfismo y Λ un conjunto hiperbólico respecto a f, además \hat{F} y \tilde{F} dadas en la definición 2.5. Entonces se obtiene lo siquiente:

a) La aplicación \tilde{F} es tan suave como f y tiene por derivada en $\tilde{0}$ al automorfismo $f_{\#} = D_{\tilde{0}}\tilde{F}$ de $\Gamma^b(\Lambda, TM)$ definido por

$$f_{\#}(\sigma) = Df.\sigma.f^{-1}.$$

b) $inc(\Lambda)$, la inclusión de Λ en M $(x \mapsto x)$, es un punto fijo hiperbólico para \hat{F} .

Demostración. Para la prueba del item (a) se considera lo siguiente

$$\begin{array}{lcl} D\tilde{F} & = & D(\exp_x^{-1})(f(\exp_{f^{-1}(x)}(\sigma(f^{-1}(x))))).Df(\exp_{f^{-1}(x)}(\sigma(f^{-1}(x))))) \\ & & .D(\exp_{f^{-1}(x)})(\sigma(f^{-1}(x))).D(\sigma)(f^{-1}(x)).D(f^{-1}(x)), \end{array}$$

al evaluar $D\tilde{F}$ en la sección cero , $\tilde{0}$, y usar el hecho que $D(\exp_x)(\tilde{0})=id$ se tiene:

$$\begin{array}{rcl} D_{\tilde{0}}\tilde{F} & = & Df(\sigma(f^{-1}(x))).D\sigma(f^{-1}(x)).Df^{-1}(x) \\ & = & Df.\sigma.f^{-1}, \end{array}$$

con lo cual $D_{\tilde{0}}\tilde{F}=Df.\sigma.f^{-1}=f_{\#},$ esto prueba el item (a).

Para la prueba del item (b) se tiene que Λ es un conjunto hiperbólico para f, luego por el lema 2.4 que $f_{\#}$ es una aplicación lineal hiperbólica, entonces $\tilde{0}$ es un punto fijo hiperbólico para \hat{F} . Por lo tanto inc(Λ) es un punto fijo hiperbólico para \hat{F} . Esto termina la prueba del item (b) y por lo tanto del lema.

Observación 2.8. Bajo las hipótesis del lema 2.7, el fibrado $\Gamma^b(\Lambda, TM)$ tiene la siguiente descomposición hiperbólica para $f_\# = D_{\tilde{0}} \tilde{F}$:

$$\Gamma^b(\Lambda, TM) = \Gamma^b(\Lambda, E^s) \oplus \Gamma^b(\Lambda, E^u),$$

donde $T_{\Lambda}M=E^s\oplus E^u$ es una descomposición hiperbólica de TM para f.

2.3. La variedad estable de $\tilde{0}$.

Al aplicar el teorema de la variedad estable para un punto fijo hiperbólico(ver [3], [6]) a $\tilde{0}$ se tiene que existe una variedad invariante para \tilde{F} , $\tilde{W}_{n}^{s}(\tilde{0}, \tilde{F})$, la cual es el gráfico de una función C^{r} :

$$\psi: \Gamma_{\eta}^{b}(\Lambda, E^{s}) \to \Gamma_{\eta}^{b}(\Lambda, E^{u}).$$

La variedad estable $\tilde{W}_{n}^{s}(\tilde{0}, \tilde{F})$ está definida con la norma $\| \ \|'$ sobre

$$\Gamma^b(\Lambda, TM) = \Gamma^b(\Lambda, E^s) \oplus \Gamma^b(\Lambda, E^s)$$

definida por

$$||(x^s, x^u)||' = \max(||x^s||, ||x^u||).$$

La variedad estable $\tilde{W}_{n}^{s}(\tilde{0}, \tilde{F})$ satisface

$$\tilde{W}_{n}^{s}(\tilde{0}, \tilde{F}) = \{ \sigma \in \Gamma_{n}^{b}(\Lambda, TM) : \tilde{F}^{n}(\sigma) \in \Gamma_{n}^{b}(\Lambda, TM), \forall n \geq 0 \},$$

donde

si
$$\tau \in \Gamma_n^b(\Lambda, E^s)$$
, entonces $\phi(\tau) \in \Gamma_n^b(\Lambda, E^u)$ (1)

es la única sección del fibrado inestable que satisface:

$$(\tilde{F})^n(\tau, \psi(\tau)) \in B'_{\eta}(\tilde{0}), \ \forall n \ge 0,$$

donde $B'_{\eta}(\tilde{0})$ es la bola de radio η centrada en $\tilde{0}$ en $\Gamma^b_{\eta}(\Lambda,TM)$ con la norma $\|\ \|'.$

Al regresar a la norma $\|\ \|$ sobre $\Gamma^b(\Lambda,TM)$ inducida por la métrica Riemanniana en M, se tiene

$$W_{\epsilon}^{s}(\tilde{0}, \tilde{F}) = \{ \sigma \in \Gamma^{b}(\Lambda, TM) : ||\tilde{F}^{n}(\sigma)|| \le \epsilon, \forall n \ge 0 \}.$$

Desde que las normas $\|\ \|\ y\ \|\ \|'$ son equivalentes se tiene que para $\epsilon>0$ suficientemente pequeño,

$$W^s_{\epsilon}(\tilde{0}, \tilde{F}) \subset \tilde{W}^s_n(\tilde{0}, \tilde{F}).$$

Lema 2.9. Se tiene:

$$\begin{split} W^s_{\epsilon}(x,f) &= \{ \exp_x(\sigma(x)) : \sigma \in W^s_{\epsilon}(\tilde{0},\tilde{F}) \} = \{ h(x) : h \in W^s_{\epsilon}(inc(\Lambda),\hat{F}) \} \\ & [W^s_{\epsilon}(\tilde{0},\tilde{F}) \subset \Gamma^b(\Lambda,TM); \ W^s_{\epsilon}(inc(\Lambda) \subset B(\Lambda,M)] \end{split}$$

DEMOSTRACIÓN. Aquí se probará que

$$W_{\epsilon}^{s}(x, f) = \{h(x) : h \in W_{\epsilon}^{s}(\operatorname{inc}(\Lambda), \hat{F})\}\$$

(a) $W^s_{\epsilon}(x, f) \supset \{h(x) : h \in W^s_{\epsilon}(\operatorname{inc}(\Lambda), \hat{F})\}.$

En efecto: Sea h un punto en la variedad estable $W_{\epsilon}^{\epsilon}(\operatorname{inc}(\Lambda), \hat{F})$, por definición la sucesión $\hat{F}^{n}(h) \to \operatorname{inc}(\Lambda)$ cuando $n \to +\infty$, esto es:

$$\sup_{z \in \Lambda} d[\hat{F}^n(h)(z), \hat{F}^n(\text{inc})(z)] \to 0 \text{ cuando } n \to +\infty.$$

Además desde que $\operatorname{inc}(\Lambda)$ es un punto fijo para \hat{F} se tiene:

$$\sup_{z \in \Lambda} d[\hat{F}^n(h)(z), z] \to 0 \text{ cuando } n \to +\infty,$$

de la definición de \hat{F} se tiene que $\hat{F}^n=f^nhf^{-n},$ al reemplazar esto resulta

$$\sup_{z \in \Lambda} d[f^n h f^{-n}(z), z] \to 0 \text{ cuando } n \to +\infty,$$

luego al usar la continuidad de f^n se sigue que

$$\sup_{z\in\Lambda}d[f^nh(z),f^n(z)]\to 0 \text{ cuando } n\to +\infty.$$

Por lo tanto $h(z) \in W^s_{\epsilon}(z, f)$.

(b) $W_{\epsilon}^{s}(x, f) \subset \{h(x) : h \in W_{\epsilon}^{s}(\operatorname{inc}(\Lambda), \hat{F})\}.$

En efecto: Sea $y \in W^s_{\epsilon}(x,f)$, es decir, $d(f^n(x),f^n(y)) \to 0$ cuando $n \to +\infty$. Lo que se debe probar es la existencia de una función que pertenezca a $W^s_{\epsilon}(\operatorname{inc}(\Lambda),\hat{F})$ tal que la imagen de x bajo esta función resulte y.

Esta función se define de la siguiente manera

$$\begin{array}{lcl} \delta_x^y(x) & = & y, \\ \delta_x^y(z) & = & z, \ \forall z \neq x, \end{array}$$

es claro que $\delta_x^y \in B(\Lambda, M)$.

Además se observa que:

$$\hat{F}(\delta_x^y(z)) = f \circ \delta_x^y \circ f^{-1}(z) = \begin{cases} z & ; & x \neq f^{-1}(z), \\ f(y) & ; & x = f^{-1}(z), \end{cases}$$

lo que implica

$$\hat{F}(\delta_x^y(z)) = f \circ \delta_x^y \circ f^{-1}(z) = \begin{cases} z & ; & f(x) \neq z, \\ f(y) & ; & f(x) = (z), \end{cases}$$

у

$$\delta_{f(x)}^{f(y)}(z) = \left\{ \begin{array}{ccc} z & ; & f(x) \neq z, \\ f(y) & ; & f(x) = (z), \end{array} \right.$$

de donde $\hat{F}(\delta_x^y(z)) = \delta_{f(x)}^{f(y)}(z),$ luego por inducción se tiene:

$$\hat{F}^n(\delta_x^y(z)) = \delta_{f^n(x)}^{f^n(y)}(z).$$

Solo resta mostrar que:

Si $y \in W^s_\epsilon(x,f)$, entonces la función $\delta^y_x \in W^s_\epsilon(\mathrm{inc}(\Lambda),\hat{F})$. Para esto se tiene:

$$d(\hat{F}^n(\delta_x^y), \operatorname{inc}(\Lambda)) = \sup_{z \in \Lambda} d(\hat{F}^n(\delta_x^y(z)), \operatorname{inc}(\Lambda)(z))$$
$$= \sup_{z \in \Lambda} d(\delta_{f^n(x)}^{f^n(y)}(z), z)$$
$$= d(f^n(y), f^n(x)).$$

Ahora como, $y \in W^s_{\epsilon}(x,f), d(f^n(y),f^n(x)) \to 0$ cuando $n \to +\infty$ se tiene que $d(\hat{F}^n(\delta^y_x),\operatorname{inc}(\Lambda)) \to 0$ cuando $n \to +\infty$.

Es decir, $\delta_x^y \in W^s_{\epsilon}(\operatorname{inc}(\Lambda), \hat{F})$.

Por lo tanto $y \in \{h(x) : h \in W^s_{\epsilon}(\mathrm{inc}(\Lambda), \hat{F})\}$. De (a) y (b) se tiene que:

$$W^s_{\epsilon}(x, f) = \{h(x) : h \in W^s_{\epsilon}(\operatorname{inc}(\Lambda), \hat{F})\},\$$

o en cartas exponenciales

$$W_{\epsilon}^{s}(x, f) = \{ \exp_{x} \sigma(x) : \sigma \in W_{\epsilon}^{s}(\tilde{0}, \tilde{F}) \}.$$

3. Resultado

3.1. Variedad estable local para un conjunto hiperbólico

Esta sección está dedicada a probar el teorema 1.1. Para esto tenemos los siguientes resultados previos.

Lema 3.1. Existe una aplicación fibrado³ continua μ de clase C^r sobre cada fibra tal que la imagen de una sección σ en $\Gamma^b_{\eta}(\Lambda, E^s)$ bajo la aplicación ψ que define $\tilde{W}^s_{\eta}(\tilde{0}, \tilde{F})$ puede ser escrita como $\psi(\sigma) = \mu \circ \sigma$.

 $El\ diagrama$

$$E_{\eta}^{s} \xrightarrow{\mu} E_{\eta}^{u}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Lambda \xrightarrow{id} \Lambda$$

conmuta.

Más aún, la restricción de μ en cada fibra sobre x con sus derivadas hasta de orden r, dependen continuamente de x.

DEMOSTRACIÓN. La condición que $\psi(\sigma) = \mu \circ \sigma$ implica en particular que el valor de $\psi(\sigma)$ en x depende unicamente de $\sigma(x)$ y no de los valores de σ en otros lugares.

Sean $x \in \Lambda$, y σ_1 , σ_2 dos secciones en $\Gamma^b_{\eta}(\Lambda, E^s)$ tal que $\sigma_1(x) = \sigma_2(x)$; se probará que $\psi(\sigma_1)(x) = \psi(\sigma_2)(x)$.

En efecto, se asume que $\psi(\sigma_1)(x) \neq \psi(\sigma_2)(x)$.

Como $[\sigma_1, \psi(\sigma_1)]$ y $[\sigma_2, \psi(\sigma_2)]$ pertenecen a $\tilde{W}_{\eta}^s(\tilde{0}, \tilde{F})$, se tiene

$$\tilde{F}^n(\sigma_1, \psi(\sigma_1)) \to \tilde{0}, \quad \tilde{F}^n(\sigma_2, \psi(\sigma_2)) \to \tilde{0}$$

cuando $n \to +\infty$, (esto es definición de variedad estable para $\tilde{0}$, vista como el gráfico de la función ψ). Ahora se define la función acotada, $\tau \in \Gamma_n^b(\Lambda, E^u)$, definida por:

$$\begin{array}{rcl} \tau(y) & = & \psi(\sigma_1)(y) & \text{para } y \neq x \\ \tau(x) & = & \psi(\sigma_2)(x). \end{array}$$

 $^{^3}$ Una aplicación fibrado es una aplicación $\mu:(E_1,\pi_1,B_1)\to (E_2,\pi_2,B_2),$ donde (E_i,π_i,B_i) son fibrados vectoriales para cada i=1,2.

De la definición de τ se tiene que $\tilde{F}(\sigma_1,\tau) \to \tilde{0}$ cuando $n \to +\infty$, puesto que $\psi(\sigma_1)(x) \neq \psi(\sigma_2)(x)$ entonces $\tau \neq \psi(\sigma_1)$, solo resta probar que $d(\tilde{F}^n(\sigma_1,\tau),\tilde{0})$ porque si se tuviera esto, se habría encontrado otra sección del fibrado inestable tal que $\tilde{F}^n(\sigma_1,\tau) \in B'_{\eta}(\tilde{0})$ y esto contradice (1).

En efecto:

$$\begin{split} d(\tilde{F}^n(\sigma_1,\tau),\tilde{0}) &= \sup_{z \in \Lambda} d(\tilde{F}^n(\sigma_1,\tau)(z),\tilde{0}_z)) \\ &= \sup_{z \in \Lambda} \|\exp_z^{-1}[f^n(\exp_{f^{-n}(z)}(\sigma_1,\tau)(f^{-n}(z)))]\| \\ &= \max \big\{ \sup_{\substack{z \in \Lambda \\ z \neq f^{-n}(x)}} \|\exp_z^{-1}[f^n(\exp_{f^{-n}(z)}(\sigma_1,\psi(\sigma_1))(f^{-n}(z)))]\|, \\ \|\exp_{f^n(x)}^{-1}[f^n(\exp_x(\sigma_2,\psi(\sigma_2))(x))]\| \big\} \\ &\leq \max \big\{ d(\tilde{F}^n(\sigma_1,\psi(\sigma_1)),\tilde{0}), d(\tilde{F}^n(\sigma_2,\psi(\sigma_2)),\tilde{0}) \big\}. \end{split}$$

la última expresión tiende a cero, cuando $n \to +\infty$, lo que demuestra que al reemplazar $\psi(\sigma_1)(x)$ por $\psi(\sigma_2)(x)$, se tiene que $\tilde{F}^n(\sigma_1,\tau)$ sigue convergiendo uniformemente a la sección cero. Esto es $\psi(\sigma_1)(x) = \psi(\sigma_2)(x)$, lo que prueba que $\psi(\sigma)(x)$ solo depende de $\sigma(x)$.

Ahora es posible definir la función $\mu: E_{\eta}^s \to E_{\eta}^u$ por $\mu(v) = \psi(\delta_x^v)(x)$, donde δ_x^v es la sección dada por $\delta_x^v(x) = v$, $\delta_x^v(z) = 0_z$ para $z \neq x$. Es decir μ es definida por la siguiente composición

$$E_x^s \longrightarrow \Gamma_\eta^b(\Lambda, E^s) \xrightarrow{\psi} \Gamma_\eta^b(\Lambda, E^u) \xrightarrow{ev_x} E_x^u,$$

$$v \longmapsto \delta_x^v \longmapsto \psi(\delta_x^v) \longmapsto \psi(\delta_x^v)(x) = \mu(v).$$

Esta definición garantiza que μ preserva las fibras de E^s_{η} . Además, μ es inducida por la función por la aplicación $\psi: \Gamma^b_{\eta}(\Lambda, E^s) \to \Gamma^b_{\eta}(\Lambda, E^u)$ la cual es de clase C^r , por lo tanto la restricción de μ a la fibra de E^s_{η} sobre x, μ_x , es de clase C^r .

Solo resta probar que μ_x depende continuamente de x en la topología C^r , lo cual no es inmediato ya que se ha considerado secciones acotadas sin tener en cuenta una topología para Λ .

Para probar la continuidad es suficiente probar que μ induce una función de clase C^r del espacio de secciones continuas $\Gamma^0_{\eta}(\Lambda, E^u)$.

Como se recuerda el siguiente diagrama conmuta:

$$\begin{array}{c|c} C^0(\Lambda,M) & \stackrel{\hat{F}}{\longrightarrow} C^0(\Lambda,M) \\ \text{inclusión} & & \text{inclusión} \\ B(\Lambda,M) & \stackrel{\hat{F}}{\longrightarrow} B(\Lambda,M) \end{array} .$$

La inclusión $inc(\Lambda)$ es un punto fijo hiperbólico para la función

$$\hat{F}: C^0(\Lambda, M) \to C^0(\Lambda, M).$$

Es posible, al trabajar con cartas, producir la variedad estable de $inc(\Lambda)$ como el gráfico de la función

$$\psi': \Gamma^0_{\eta}(\Lambda, E^s) \to \Gamma^0_{\eta}(\Lambda, E^u).$$

Esta función ψ' es de clase C^r y debería ser la restricción de ψ a $\Gamma^0_{\eta}(\Lambda, E^s)$, desde que la variedad estable de 0 en $\Gamma^0_{\eta}(\Lambda, M)$ es el gráfico de ψ .

Así $\psi'(\sigma) = \mu \circ \sigma$ y se observa que la función μ_x y todas sus derivadas hasta de orden r dependen continuamente de x.

Demostración del teorema 1.1

Demostración. Se tiene

$$W_{\epsilon}^{s}(x,b) = \{exp_{x}(\gamma(x)) : \gamma \in W_{\epsilon}^{s}(\tilde{0},\tilde{F})\} \subset \tilde{W}_{n}^{s}(x,b),$$

donde

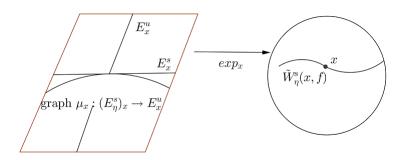
$$\tilde{W}_{\eta}^{s}(x,b) = \{exp_{x}[v,\mu(v)] : v \in E_{x}^{s}, ||v|| < \eta\}$$

o de manera equivalente

$$\tilde{W}_{n}^{s}(x,b) = \{exp_{x}(\operatorname{graph} \mu_{x} \subset T_{x}M)\}.$$

Desde que la restricción de μ a cada fibra es C^r y además exp_x es un difeomorfismo local, entonces $\tilde{W}^s_{\eta}(x,b)$ es un disco embebido alrededor de x de dimensión igual a la dimensión de E^s_x (ver figura 4).

Figura 4: Aplicación exponencial



Desde que $\psi(\tilde{0})=\tilde{0}$, se tiene que: $\mu\circ\tilde{0}=\tilde{\psi}(\tilde{0})=\tilde{0}$, entonces $\mu(0_{E^s_x})=0_{E^u_x}$. Desde que el gráfico de ψ , $\{(\sigma,\psi(\sigma)):\sigma\in\Gamma^b_\epsilon(\Lambda,E^s)\}$, es tangente a $\Gamma^b_\epsilon(\Lambda,E^s)$ en $\tilde{0}$, el gráfico de la restricción de μ a la fibra sobre x, $\{(v,\mu(v)):v\in E^s_x,\|v\|\leq\eta\}$ es tangente a E^s_x en el origen del espacio tangente a M en x. Por lo tanto

$$T_x(\tilde{W}_n^s(x,f)) = E_x^s. \tag{2}$$

Sea la función

$$\begin{array}{ccc} \operatorname{graph} \, \mu : \Lambda & \to & \operatorname{Emb}(D^s, M) \\ x & \mapsto & \exp_x[\operatorname{graph} \, \mu_x], \end{array}$$

donde $s=\dim E_x^s.$ Esta función esta definida localmente por las cartas del fibrado E^s y es continua.

Descompongamos esta función.

Sea $C_x:D^s_\eta\to(E^s_\eta)_x$ la carta trivializante del fibrado en una vecindad de x. Además sea la función

$$\begin{array}{ccc} p_x:D^s_{\eta} & \to & M \\ y & \to & \exp_x[C_x(y),\mu\circ C_x(y)]. \end{array}$$

(No olvidar reescalar via la función sc : $D_1^s \to D_{\eta}^s$.) La función graph μ está definidad localmente por (graph μ) $x = p_x \circ \text{sc}$ y es continua.

Por lo tanto $\tilde{W}^s_{\eta}(x,f)$ es un disco C^r que depende continuamente sobre x en la topología C^r .

Ahora se mostrará que $W^s_\epsilon(x,f)$ es un disco de la misma dimensión que $\tilde{W}^s_n(x,f)$ y que varía continuamente sobre x.

En efecto: Como $T_x(\tilde{W}_{\eta}^s(x,f)) = E_x^s$ (ver ecuación (2)) se tiene que:

$$\|T_x(\tilde{W}^s_{\eta}(x,f))\| = \|T_xf|_{\tilde{W}^s_{\eta}(x,f)}\| = \|E^s_x\| < \lambda \Rightarrow \|T_xf|_{\tilde{W}^s_{\eta}(x,f)}\| < \lambda.$$

Así se tiene que para ϵ suficientemente pequeño se cumple la siguiente implicación:

Si
$$y \in \tilde{W}_{n}^{s}(x, f)$$
 y $d(x, y) \leq \epsilon$, entonces $d(f(x), f(y)) \leq \lambda d(x, y)$.

Esta afirmación es verdadera ya que $\tilde{W}^s_{\eta}(x,f)$ varía continuamente con respecto a x, es más ϵ puede ser tomado independientemente de x ya que Λ es compacto.

Con esto se tiene:

$$W_{\epsilon}^{s}(x,f) = \{ y \in \tilde{W}_{\eta}^{s}(x,f) : d(y,x) \le \epsilon \} = \tilde{W}_{\eta}^{s}(x,b) \cap B_{\epsilon}(x).$$

Ahora si ϵ es suficientemente pequeño

$$\tilde{W}_n^s(x,b) \cap B_{\epsilon}(x)$$

es un disco y el teorema de isotopía de Thom (ver la sección 8 del libro [1], también Apéndice 2 de [3]) muestra que este depende continuamente C^r de x.

4. Conclusiones y sugerencias

4.1. Conclusiones

Es posible generalizar el concepto de punto hiperbólico a conjunto hiperbólico.

El conjunto variedad estable asociado a un conjunto hiperbólico, es en efecto una variedad diferenciable tan suave como la función que le sa su origen.

4.2. Sugerencias

Se sugiere hacer el cálculo de variedades estables para conjuntos hiperbólicos particulares.

Referencias

- [1] Hirsch, Morris W. Differential topology Springer-Verlag, New York-Heidelberg, 1976.
- [2] MENDOZA, JOEL Construcción de una herradura con medida de Lebesgue positiva. 2016 ENTRE LETRAS Y NÚMEROS. Pontificia Universidad Católica del Perú- Universidad San Ignacio de Loyola. Lima-Perú.
- [3] MENDOZA, JOEL Hiperbolicidad en variedades de dimensión infinita Tesis de licenciatura 2016 Universidad Nacional Pedro Ruiz gallo Lambayeque-Perú.
- [4] Petersen, Peter Riemannian geometry Springer-Verlag, New York, 1998. Bull. Sci. Math 128 (2004) 7–22.
- [5] ROBINSON, CLARK Dynamical systems: Stability, symbolic dynamics, and chaos CRC Press, Boca Raton, FL 1999.
- [6] Shub, Michael Global stability of dynamical systems Springer-Verlag, New York, 1987.